Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
bioRxiv ; 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38260319

RESUMEN

Tumor cell intravasation is essential for metastatic dissemination, but its exact mechanism is incompletely understood. We have previously shown that in breast cancer, the direct and stable association of a tumor cell expressing Mena, a Tie2hi/VEGFhi macrophage, and a vascular endothelial cell, creates an intravasation portal, called a "tumor microenvironment of metastasis" (TMEM) doorway, for tumor cell intravasation, leading to dissemination to distant sites. The density of TMEM doorways, also called TMEM doorway score, is a clinically validated prognostic marker of distant metastasis in breast cancer patients. Although we know that tumor cells utilize TMEM doorway-associated transient vascular openings to intravasate, the precise signaling mechanisms involved in TMEM doorway function are only partially understood. Using two mouse models of breast cancer and an in vitro assay of intravasation, we report that CSF-1 secreted by the TMEM doorway tumor cell stimulates local secretion of VEGF-A from the Tie2hi TMEM doorway macrophage, leading to the dissociation of endothelial junctions between TMEM doorway associated endothelial cells, supporting tumor cell intravasation. Acute blockade of CSF-1R signaling decreases macrophage VEGF-A secretion as well as TMEM doorway-associated vascular opening, tumor cell trans-endothelial migration, and dissemination. These new insights into signaling events regulating TMEM doorway function should be explored further as treatment strategies for metastatic disease.

2.
Mol Cancer Ther ; 23(2): 223-234, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-37871911

RESUMEN

Osteosarcoma is an aggressive bone malignancy with a poor prognosis. One putative proto-oncogene in osteosarcoma is SKP2, encoding a substrate recognition factor of the SCF E3 ubiquitin ligase. We previously demonstrated that Skp2 knockout in murine osteosarcoma improved survival and delayed tumorigenesis. Here, we performed RNA sequencing (RNA-seq) on tumors from a transgenic osteosarcoma mouse model with conditional Trp53 and Rb1 knockouts in the osteoblast lineage ("DKO": Osx1-Cre;Rb1lox/lox;p53lox/lox) and a triple-knockout model with additional Skp2 germline knockout ("TKO": Osx1-Cre;Rb1lox/lox;p53lox/lox;Skp2-/-), followed by qPCR and immunohistochemistry validation. To investigate the clinical implications of our results, we analyzed a human osteosarcoma patient cohort ("NCI-TARGET OS") with RNA-seq and clinical data. We found large differences in gene expression after SKP2 knockout. Surprisingly, we observed increased expression of genes related to immune microenvironment infiltration in TKO tumors, especially the signature genes for macrophages and to a lesser extent, T cells, B cells, and vascular cells. We also uncovered a set of relevant transcription factors that may mediate these changes. In osteosarcoma patient cohorts, high expression of genes upregulated in TKO was correlated with favorable overall survival, which was largely explained by the macrophage gene signatures. This relationship was further supported by our finding that SKP2 expression was negatively correlated with macrophage infiltration in the NCI-TARGET osteosarcoma and the TCGA Sarcoma cohorts. Overall, our findings indicate that SKP2 may mediate immune exclusion from the osteosarcoma tumor microenvironment, suggesting that SKP2 modulation in osteosarcoma may induce antitumor immune activation.


Asunto(s)
Neoplasias Óseas , Osteosarcoma , Animales , Humanos , Ratones , Neoplasias Óseas/genética , Modelos Animales de Enfermedad , Ratones Noqueados , Ratones Transgénicos , Osteosarcoma/genética , Osteosarcoma/patología , Pronóstico , Proteínas Quinasas Asociadas a Fase-S/genética , Proteínas Quinasas Asociadas a Fase-S/metabolismo , Microambiente Tumoral/genética , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
3.
Dev Cell ; 58(23): 2700-2717.e12, 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-37963469

RESUMEN

How dedifferentiated stem-like tumor cells evade immunosurveillance remains poorly understood. We show that the lineage-plasticity regulator SOX9, which is upregulated in dedifferentiated tumor cells, limits the number of infiltrating T lymphocytes in premalignant lesions of mouse basal-like breast cancer. SOX9-mediated immunosuppression is required for the progression of in situ tumors to invasive carcinoma. SOX9 induces the expression of immune checkpoint B7x/B7-H4 through STAT3 activation and direct transcriptional regulation. B7x is upregulated in dedifferentiated tumor cells and protects them from immunosurveillance. B7x also protects mammary gland regeneration in immunocompetent mice. In advanced tumors, B7x targeting inhibits tumor growth and overcomes resistance to anti-PD-L1 immunotherapy. In human breast cancer, SOX9 and B7x expression are correlated and associated with reduced CD8+ T cell infiltration. This study, using mouse models, cell lines, and patient samples, identifies a dedifferentiation-associated immunosuppression mechanism and demonstrates the therapeutic potential of targeting the SOX9-B7x pathway in basal-like breast cancer.


Asunto(s)
Neoplasias de la Mama , Animales , Femenino , Humanos , Ratones , Linfocitos T CD8-positivos , Terapia de Inmunosupresión , Factor de Transcripción SOX9 , Inhibidor 1 de la Activación de Células T con Dominio V-Set/metabolismo
4.
bioRxiv ; 2023 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-37961438

RESUMEN

Breast cancer is the most commonly diagnosed malignancy and the major leading cause of tumor-related deaths in women. It is estimated that the majority of breast tumor-related deaths are a consequence of metastasis, to which no cure exists at present. The FAK family proteins Proline-rich tyrosine kinase (PYK2) and focal adhesion kinase (FAK) are highly expressed in breast cancer, but the exact cellular and signaling mechanisms by which they regulate in vivo tumor cell invasiveness and consequent metastatic dissemination are mostly unknown. Using a PYK2 and FAK knockdown xenograft model we show here, for the first time, that ablation of either PYK2 or FAK decreases primary tumor size and significantly reduces Tumor MicroEnvironment of Metastasis (TMEM) doorway activation, leading to decreased intravasation and reduced spontaneous lung metastasis. Intravital imaging analysis further demonstrates that PYK2, but not FAK, regulates a motility phenotype switch between focal adhesion-mediated fast motility and invadopodia-dependent, ECM-degradation associated slow motility within the primary tumor. Furthermore, we validate our in vivo and intravital imaging results with integrated transcriptomic and proteomic data analysis from xenograft knockdown tumors and reveal new and distinct pathways by which these two homologous kinases regulate breast tumor cell invasiveness and consequent metastatic dissemination. Our findings identify PYK2 and FAK as novel mediators of mammary tumor progression and metastasis and as candidate therapeutic targets for breast cancer metastasis.

5.
J Vis Exp ; (200)2023 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-37870314

RESUMEN

The physiology and pathophysiology of the pancreas are complex. Diseases of the pancreas, such as pancreatitis and pancreatic adenocarcinoma (PDAC) have high morbidity and mortality. Intravital imaging (IVI) is a powerful technique enabling the high-resolution imaging of tissues in both healthy and diseased states, allowing for real-time observation of cell dynamics. IVI of the murine pancreas presents significant challenges due to the deep visceral and compliant nature of the organ, which make it highly prone to damage and motion artifacts. Described here is the process of implantation of the Stabilized Window for Intravital imaging of the murine Pancreas (SWIP). The SWIP allows IVI of the murine pancreas in normal healthy states, during the transformation from the healthy pancreas to acute pancreatitis induced by cerulein, and in malignant states such as pancreatic tumors. In conjunction with genetically labeled cells or the administration of fluorescent dyes, the SWIP enables the measurement of single-cell and subcellular dynamics (including single-cell and collective migration) as well as serial imaging of the same region of interest over multiple days. The ability to capture tumor cell migration is of particular importance as the primary cause of cancer-related mortality in PDAC is the overwhelming metastatic burden. Understanding the physiological dynamics of metastasis in PDAC is a critical unmet need and crucial for improving patient prognosis. Overall, the SWIP provides improved imaging stability and expands the application of IVI in the healthy pancreas and malignant pancreas diseases.


Asunto(s)
Adenocarcinoma , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Pancreatitis , Humanos , Animales , Ratones , Neoplasias Pancreáticas/diagnóstico por imagen , Neoplasias Pancreáticas/patología , Pancreatitis/patología , Adenocarcinoma/patología , Enfermedad Aguda , Páncreas/diagnóstico por imagen , Páncreas/patología , Microscopía Intravital/métodos , Carcinoma Ductal Pancreático/patología
6.
J Vis Exp ; (197)2023 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-37486129

RESUMEN

Metastasis - the systemic spread of cancer - is the leading cause of cancer-related deaths. Although metastasis is commonly thought of as a unidirectional process wherein cells from the primary tumor disseminate and seed metastases, tumor cells in existing metastases can also redisseminate and give rise to new lesions in tertiary sites in a process known as "metastasis-from-metastases" or "metastasis-to-metastasis seeding." Metastasis-to-metastasis seeding may increase the metastatic burden and decrease the patient's quality of life and survival. Therefore, understanding the processes behind this phenomenon is crucial to refining treatment strategies for patients with metastatic cancer. Little is known about metastasis-to-metastasis seeding, due in part to logistical and technological limitations. Studies on metastasis-to-metastasis seeding rely primarily on sequencing methods, which may not be practical for researchers studying the exact timing of metastasis-to-metastasis seeding events or what promotes or prevents them. This highlights the lack of methodologies that facilitate the study of metastasis-to-metastasis seeding. To address this, we have developed - and describe herein - a murine surgical protocol for the selective photoconversion of lung metastases, allowing specific marking and fate tracking of tumor cells redisseminating from the lung to tertiary sites. To our knowledge, this is the only method for studying tumor cell redissemination and metastasis-to-metastasis seeding from the lungs that does not require genomic analysis.


Asunto(s)
Neoplasias Pulmonares , Calidad de Vida , Humanos , Animales , Ratones , Neoplasias Pulmonares/patología , Metástasis de la Neoplasia
7.
NPJ Breast Cancer ; 9(1): 52, 2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37311792

RESUMEN

Black, compared to white, women with residual estrogen receptor-positive (ER+) breast cancer after neoadjuvant chemotherapy (NAC) have worse distant recurrence-free survival (DRFS). Such racial disparity may be due to difference in density of portals for systemic cancer cell dissemination, called TMEM doorways, and pro-metastatic tumor microenvironment (TME). Here, we evaluate residual cancer specimens after NAC from 96 Black and 87 white women. TMEM doorways are visualized by triple immunohistochemistry, and cancer stem cells by immunofluorescence for SOX9. The correlation between TMEM doorway score and pro-metastatic TME parameters with DRFS is examined using log-rank and multivariate Cox regression. Black, compared to white, patients are more likely to develop distant recurrence (49% vs 34.5%, p = 0.07), receive mastectomy (69.8% vs 54%, p = 0.04), and have higher grade tumors (p = 0.002). Tumors from Black patients have higher TMEM doorway and macrophages density overall (p = 0.002; p = 0.002, respectively) and in the ER+/HER2- (p = 0.02; p = 0.02, respectively), but not in the triple negative disease. Furthermore, high TMEM doorway score is associated with worse DRFS. TMEM doorway score is an independent prognostic factor in the entire study population (HR, 2.02; 95%CI, 1.18-3.46; p = 0.01), with a strong trend in ER+/HER2- disease (HR, 2.38; 95%CI, 0.96-5.95; p = 0.06). SOX9 expression is not associated with racial disparity in TME or outcome. In conclusion, higher TMEM doorway density in residual breast cancer after NAC is associated with higher distant recurrence risk, and Black patients are associated with higher TMEM doorway density, suggesting that TMEM doorway density may contribute to racial disparities in breast cancer.

8.
Breast Cancer Res ; 25(1): 37, 2023 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-37024946

RESUMEN

Metastasis is a multistep process that leads to the formation of clinically detectable tumor foci at distant organs and frequently to patient demise. Only a subpopulation of breast cancer cells within the primary tumor can disseminate systemically and cause metastasis. To disseminate, cancer cells must express MenaINV, an isoform of the actin regulatory protein Mena, encoded by the ENAH gene, that endows tumor cells with transendothelial migration activity, allowing them to enter and exit the blood circulation. We have previously demonstrated that MenaINV mRNA and protein expression is induced in cancer cells by macrophage contact. In this study, we discovered the precise mechanism by which macrophages induce MenaINV expression in tumor cells. We examined the promoter of the human and mouse ENAH gene and discovered a conserved NF-κB transcription factor binding site. Using live imaging of an NF-κB activity reporter and staining of fixed tissues from mouse and human breast cancer, we further determined that for maximal induction of MenaINV in cancer cells, NF-κB needs to cooperate with the Notch1 signaling pathway. Mechanistically, Notch1 signaling does not directly increase MenaINV expression, but it enhances and sustains NF-κB signaling through retention of p65, an NF-κB transcription factor, in the nucleus of tumor cells, leading to increased MenaINV expression. In mice, these signals are augmented following chemotherapy treatment and abrogated upon macrophage depletion. Targeting Notch1 signaling in vivo decreased NF-κB signaling activation and MenaINV expression in the primary tumor and decreased metastasis. Altogether, these data uncover mechanistic targets for blocking MenaINV induction that should be explored clinically to decrease cancer cell dissemination and improve survival of patients with metastatic disease.


Asunto(s)
Neoplasias de la Mama , FN-kappa B , Humanos , Ratones , Animales , Femenino , FN-kappa B/genética , FN-kappa B/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Transducción de Señal , Macrófagos/metabolismo , Receptor Notch1/genética , Receptor Notch1/metabolismo
9.
bioRxiv ; 2023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36711751

RESUMEN

Metastasis is a multistep process that leads to the formation of clinically detectable tumor foci at distant organs and frequently patient demise. Only a subpopulation of breast cancer cells within the primary tumor can disseminate systemically and cause metastasis. To disseminate, cancer cells must express MenaINV, an isoform of the actin-regulatory protein Mena encoded by the ENAH gene that endows tumor cells with transendothelial migration activity allowing them to enter and exit the blood circulation. We have previously demonstrated that MenaINV mRNA and protein expression is induced in cancer cells by macrophage contact. In this study, we discovered the precise mechanism by which macrophages induce MenaINV expression in tumor cells. We examined the promoter of the human and mouse ENAH gene and discovered a conserved NF-κB transcription factor binding site. Using live imaging of an NF-κB activity reporter and staining of fixed tissues from mouse and human breast cancer we further determined that for maximal induction of MenaINV in cancer cell NF-κB needs to cooperate with the Notch1 signaling pathway. Mechanistically, Notch1 signaling does not directly increase MenaINV expression, but it enhances and sustains NF-κB signaling through retention of p65, an NF-κB transcription factor, in the nucleus of tumor cells, leading to increased MenaINV expression. In mice, these signals are augmented following chemotherapy treatment and abrogated upon macrophage depletion. Targeting Notch1 signaling in vivo decreased NF-κB signaling and MenaINV expression in the primary tumor and decreased metastasis. Altogether, these data uncover mechanistic targets for blocking MenaINV induction that should be explored clinically to decrease cancer cell dissemination and improve survival of patients with metastatic disease.

10.
Nat Rev Cancer ; 23(1): 25-42, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36385560

RESUMEN

Navigation through the bulk tumour, entry into the blood vasculature, survival in the circulation, exit at distant sites and resumption of proliferation are all steps necessary for tumour cells to successfully metastasize. The ability of tumour cells to complete these steps is highly dependent on the timing and sequence of the interactions that these cells have with the tumour microenvironment (TME), including stromal cells, the extracellular matrix and soluble factors. The TME thus plays a major role in determining the overall metastatic phenotype of tumours. The complexity and cause-and-effect dynamics of the TME cannot currently be recapitulated in vitro or inferred from studies of fixed tissue, and are best studied in vivo, in real time and at single-cell resolution. Intravital imaging (IVI) offers these capabilities, and recent years have been a time of immense growth and innovation in the field. Here we review some of the recent advances in IVI of mammalian models of cancer and describe how IVI is being used to understand cancer progression and metastasis, and to develop novel treatments and therapies. We describe new techniques that allow access to a range of tissue and cancer types, novel fluorescent reporters and biosensors that allow fate mapping and the probing of functional and phenotypic states, and the clinical applications that have arisen from applying these techniques, reporters and biosensors to study cancer. We finish by presenting some of the challenges that remain in the field, how to address them and future perspectives.


Asunto(s)
Neoplasias , Animales , Humanos , Neoplasias/diagnóstico por imagen , Neoplasias/patología , Microscopía Intravital/métodos , Microambiente Tumoral , Mamíferos
11.
NPJ Breast Cancer ; 8(1): 101, 2022 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-36056005

RESUMEN

Metastatic dissemination in breast cancer is regulated by specialized intravasation sites called "tumor microenvironment of metastasis" (TMEM) doorways, composed of a tumor cell expressing the actin-regulatory protein Mena, a perivascular macrophage, and an endothelial cell, all in stable physical contact. High TMEM doorway number is associated with an increased risk of distant metastasis in human breast cancer and mouse models of breast carcinoma. Here, we developed a novel magnetic resonance imaging (MRI) methodology, called TMEM Activity-MRI, to detect TMEM-associated vascular openings that serve as the portal of entry for cancer cell intravasation and metastatic dissemination. We demonstrate that TMEM Activity-MRI correlates with primary tumor TMEM doorway counts in both breast cancer patients and mouse models, including MMTV-PyMT and patient-derived xenograft models. In addition, TMEM Activity-MRI is reduced in mouse models upon treatment with rebastinib, a specific and potent TMEM doorway inhibitor. TMEM Activity-MRI is an assay that specifically measures TMEM-associated vascular opening (TAVO) events in the tumor microenvironment, and as such, can be utilized in mechanistic studies investigating molecular pathways of cancer cell dissemination and metastasis. Finally, we demonstrate that TMEM Activity-MRI increases upon treatment with paclitaxel in mouse models, consistent with prior observations that chemotherapy enhances TMEM doorway assembly and activity in human breast cancer. Our findings suggest that TMEM Activity-MRI is a promising precision medicine tool for localized breast cancer that could be used as a non-invasive test to determine metastatic risk and serve as an intermediate pharmacodynamic biomarker to monitor therapeutic response to agents that block TMEM doorway-mediated dissemination.

12.
Open Biol ; 12(6): 210273, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35702996

RESUMEN

Pancreatitis and pancreatic ductal adenocarcinoma (PDAC) are grave illnesses with high levels of morbidity and mortality. Intravital imaging (IVI) is a powerful technique for visualizing physiological processes in both health and disease. However, the application of IVI to the murine pancreas presents significant challenges, as it is a deep, compliant, visceral organ that is difficult to access, easily damaged and susceptible to motion artefacts. Existing imaging windows for stabilizing the pancreas during IVI have unfortunately shown poor stability for time-lapsed imaging on the minutes to hours scale, or are unable to accommodate both the healthy and tumour-bearing pancreata. To address these issues, we developed an improved stabilized window for intravital imaging of the pancreas (SWIP), which can be applied to not only the healthy pancreas but also to solid tumours like PDAC. Here, we validate the SWIP and use it to visualize a variety of processes for the first time, including (1) single-cell dynamics within the healthy pancreas, (2) transformation from healthy pancreas to acute pancreatitis induced by cerulein, and (3) the physiology of PDAC in both autochthonous and orthotopically injected models. SWIP can not only improve the imaging stability but also expand the application of IVI in both benign and malignant pancreas diseases.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Pancreatitis , Enfermedad Aguda , Animales , Carcinoma Ductal Pancreático/diagnóstico por imagen , Carcinoma Ductal Pancreático/patología , Microscopía Intravital , Ratones , Páncreas/diagnóstico por imagen , Páncreas/patología , Neoplasias Pancreáticas/diagnóstico por imagen , Neoplasias Pancreáticas/patología , Pancreatitis/inducido químicamente , Pancreatitis/diagnóstico por imagen , Pancreatitis/patología , Neoplasias Pancreáticas
13.
Cancers (Basel) ; 14(9)2022 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-35565297

RESUMEN

PURPOSE: to develop several digital pathology-based machine vision algorithms for combining TMEM and MenaCalc scores and determine if a combination of these biomarkers improves the ability to predict development of distant metastasis over and above that of either biomarker alone. METHODS: This retrospective study included a subset of 130 patients (65 patients with no recurrence and 65 patients with a recurrence at 5 years) from the Calgary Tamoxifen cohort of breast cancer patients. Patients had confirmed invasive breast cancer and received adjuvant tamoxifen therapy. Of the 130 patients, 86 cases were suitable for analysis in this study. Sequential sections of formalin-fixed paraffin-embedded patient samples were stained for TMEM doorways (immunohistochemistry triple staining) and MenaCalc (immunofluorescence staining). Stained sections were imaged, aligned, and then scored for TMEM doorways and MenaCalc. Different ways of combining TMEM doorway and MenaCalc scores were evaluated and compared to identify the best performing combined marker by using the restricted mean survival time (RMST) difference method. RESULTS: the best performing combined marker gave an RMST difference of 5.27 years (95% CI: 1.71-8.37), compared to 3.56 years (95% CI: 0.95-6.1) for the associated standalone TMEM doorway analysis and 2.94 years (95% CI: 0.25-5.87) for the associated standalone MenaCalc analysis. CONCLUSIONS: combining TMEM doorway and MenaCalc scores as a new biomarker improves prognostication over that observed with TMEM doorway or MenaCalc Score alone in this cohort of 86 patients.

14.
Cancer ; 128(14): 2728-2735, 2022 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-35578919

RESUMEN

BACKGROUND: Black race is associated with worse outcome in patients with breast cancer. The distant relapse-free survival (DRFS) between Black and White women with localized breast cancer who participated in National Cancer Institute-sponsored clinical trial was evaluated. METHODS: Pooled data were analyzed from 8 National Surgical Adjuvant Breast and Bowel Project (NSABP) trials including 9702 women with localized breast cancer treated with adjuvant chemotherapy (AC, n = 7485) or neoadjuvant chemotherapy (NAC, n = 2217), who self-reported as Black (n = 1070) or White (n = 8632) race. The association between race and DRFS was analyzed using log-rank tests and multivariate Cox regression. RESULTS: After adjustment for covariates including age, tumor size, nodal status, body mass index and taxane use, and treatment (AC vs NAC), Black race was associated with an inferior DRFS in estrogen receptor-positive (ER+; hazard ratio [HR], 1.24; 95% CI, 1.05-1.46; P = .01), but not in ER- disease (HR, 0.97; 95% CI, 0.83-1.14; P = .73), and significant interaction between race and ER status was observed (P = .03). There was no racial disparity in DRFS among patients with pathologic complete response (pCR) (log-rank P = .8). For patients without pCR, Black race was associated with worse DRFS in ER+ (HR, 1.67; 95% CI, 1.14-2.45; P = .01), but not in ER- disease (HR, 0.91; 95% CI, 0.65-1.28; P = .59). CONCLUSIONS: Black race was associated with significantly inferior DRFS in ER+ localized breast cancer treated with AC or NAC, but not in ER- disease. In the NAC group, racial disparity was also observed in patients with residual ER+ breast cancer at surgery, but not in those who had pCR. LAY SUMMARY: Black women with breast cancer have worse outcomes compared with White women. We investigated if this held true in the context of clinical trials that provide controlled treatment setting. Black women with cancer expressing estrogen receptors (ERs) had worse outcome than White women. If breast cancers did not express ERs, there was no racial disparity in outcome. We also observed racial disparity in women who received chemotherapy before their cancer was removed, but only if they had cancer expressing ERs and residual disease on completion of treatment. If the cancer disappeared with presurgical chemotherapy, there was no racial disparity.


Asunto(s)
Neoplasias de la Mama , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/cirugía , Quimioterapia Adyuvante , Femenino , Humanos , Terapia Neoadyuvante , Recurrencia Local de Neoplasia/tratamiento farmacológico , Receptores de Estrógenos/análisis
15.
Nat Commun ; 13(1): 626, 2022 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-35110548

RESUMEN

Metastases are initiated by disseminated tumor cells (DTCs) that colonize distant organs. Growing evidence suggests that the microenvironment of the primary tumor primes DTCs for dormant or proliferative fates. However, the manner in which this occurs remains poorly understood. Here, using the Window for High-Resolution Intravital Imaging of the Lung (WHRIL), we study the live lung longitudinally and follow the fate of individual DTCs that spontaneously disseminate from orthotopic breast tumors. We find that spontaneously DTCs have increased levels of retention, increased speed of extravasation, and greater survival after extravasation, compared to experimentally metastasized tumor cells. Detailed analysis reveals that a subset of macrophages within the primary tumor induces a pro-dissemination and pro-dormancy DTC phenotype. Our work provides insight into how specific primary tumor microenvironments prime a subpopulation of cells for expression of proteins associated with dissemination and dormancy.


Asunto(s)
Microambiente Tumoral/fisiología , Macrófagos Asociados a Tumores/fisiología , Animales , Neoplasias de la Mama/genética , Línea Celular Tumoral , Femenino , Humanos , Ratones , Ratones Endogámicos C57BL , Neoplasias Experimentales , Células Madre Neoplásicas , Fenotipo
16.
Artículo en Inglés | MEDLINE | ID: mdl-37621948

RESUMEN

Tissues are heterogeneous with respect to cellular and non-cellular components and in the dynamic interactions between these elements. To study the behaviour and fate of individual cells in these complex tissues, intravital microscopy (IVM) techniques such as multiphoton microscopy have been developed to visualize intact and live tissues at cellular and subcellular resolution. IVM experiments have revealed unique insights into the dynamic interplay between different cell types and their local environment, and how this drives morphogenesis and homeostasis of tissues, inflammation and immune responses, and the development of various diseases. This Primer introduces researchers to IVM technologies, with a focus on multiphoton microscopy of rodents, and discusses challenges, solutions and practical tips on how to perform IVM. To illustrate the unique potential of IVM, several examples of results are highlighted. Finally, we discuss data reproducibility and how to handle big imaging data sets.

17.
Cancer Discov ; 12(2): 542-561, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34551968

RESUMEN

The degree of metastatic disease varies widely among patients with cancer and affects clinical outcomes. However, the biological and functional differences that drive the extent of metastasis are poorly understood. We analyzed primary tumors and paired metastases using a multifluorescent lineage-labeled mouse model of pancreatic ductal adenocarcinoma (PDAC)-a tumor type in which most patients present with metastases. Genomic and transcriptomic analysis revealed an association between metastatic burden and gene amplification or transcriptional upregulation of MYC and its downstream targets. Functional experiments showed that MYC promotes metastasis by recruiting tumor-associated macrophages, leading to greater bloodstream intravasation. Consistent with these findings, metastatic progression in human PDAC was associated with activation of MYC signaling pathways and enrichment for MYC amplifications specifically in metastatic patients. Collectively, these results implicate MYC activity as a major determinant of metastatic burden in advanced PDAC. SIGNIFICANCE: Here, we investigate metastatic variation seen clinically in patients with PDAC and murine PDAC tumors and identify MYC as a major driver of this heterogeneity.This article is highlighted in the In This Issue feature, p. 275.


Asunto(s)
Adenocarcinoma/genética , Carcinoma Ductal Pancreático/genética , Regulación Neoplásica de la Expresión Génica , Genes myc , Metástasis de la Neoplasia , Neoplasias Pancreáticas/genética , Adenocarcinoma/secundario , Animales , Carcinoma Ductal Pancreático/secundario , Modelos Animales de Enfermedad , Humanos , Ratones , Neoplasias Pancreáticas/patología
18.
Nat Commun ; 12(1): 7300, 2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34911937

RESUMEN

Cancer stem cells (CSCs) play an important role during metastasis, but the dynamic behavior and induction mechanisms of CSCs are not well understood. Here, we employ high-resolution intravital microscopy using a CSC biosensor to directly observe CSCs in live mice with mammary tumors. CSCs display the slow-migratory, invadopod-rich phenotype that is the hallmark of disseminating tumor cells. CSCs are enriched near macrophages, particularly near macrophage-containing intravasation sites called Tumor Microenvironment of Metastasis (TMEM) doorways. Substantial enrichment of CSCs occurs on association with TMEM doorways, contributing to the finding that CSCs represent >60% of circulating tumor cells. Mechanistically, stemness is induced in non-stem cancer cells upon their direct contact with macrophages via Notch-Jagged signaling. In breast cancers from patients, the density of TMEM doorways correlates with the proportion of cancer cells expressing stem cell markers, indicating that in human breast cancer TMEM doorways are not only cancer cell intravasation portals but also CSC programming sites.


Asunto(s)
Neoplasias de la Mama/inmunología , Macrófagos/inmunología , Células Madre Neoplásicas/citología , Animales , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Línea Celular Tumoral , Femenino , Humanos , Microscopía Intravital , Ratones , Ratones SCID , Metástasis de la Neoplasia , Células Neoplásicas Circulantes/inmunología , Células Madre Neoplásicas/inmunología , Receptores Notch/genética , Receptores Notch/inmunología , Transducción de Señal , Microambiente Tumoral/inmunología
19.
Cancers (Basel) ; 13(22)2021 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-34830883

RESUMEN

The Tie2 receptor tyrosine kinase is expressed in vascular endothelial cells, tumor-associated macrophages, and tumor cells and has been a major focus of research in therapies targeting the tumor microenvironment. The most extensively studied Tie2 ligands are Angiopoietin 1 and 2 (Ang1, Ang2). Ang1 plays a critical role in vessel maturation, endothelial cell migration, and survival. Ang2, depending on the context, may function to disrupt connections between the endothelial cells and perivascular cells, promoting vascular regression. However, in the presence of VEGF-A, Ang2 instead promotes angiogenesis. Tie2-expressing macrophages play a critical role in both tumor angiogenesis and the dissemination of tumor cells from the primary tumor to secondary sites. Therefore, Ang-Tie2 signaling functions as an angiogenic switch during tumor progression and metastasis. Here we review the recent advances and complexities of targeting Tie2 signaling in the tumor microenvironment as a possible anti-angiogenic, and anti-metastatic, therapy and describe its use in combination with chemotherapy.

20.
BMJ Open ; 11(10): e053397, 2021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-34702732

RESUMEN

INTRODUCTION: Ductal carcinoma in situ (DCIS) of the breast is a non-obligate precursor of invasive breast cancer (IBC). Many DCIS patients are either undertreated or overtreated. The overarching goal of the study described here is to facilitate detection of patients with DCIS at risk of IBC development. Here, we propose to use risk factor data and formalin-fixed paraffin-embedded (FFPE) DCIS tissue from a large, ethnically diverse, population-based cohort of 8175 women with a first diagnosis of DCIS and followed for subsequent IBC to: identify/validate miRNA expression changes in DCIS tissue associated with risk of subsequent IBC; evaluate ipsilateral IBC risk in association with two previously identified marker sets (triple immunopositivity for p16, COX-2, Ki67; Oncotype DX Breast DCIS score); examine the association of risk factor data with IBC risk. METHODS AND ANALYSIS: We are conducting a series of case-control studies nested within the cohort. Cases are women with DCIS who developed subsequent IBC; controls (2/case) are matched to cases on calendar year of and age at DCIS diagnosis. We project 485 cases/970 controls in the aim focused on risk factors. We estimate obtaining FFPE tissue for 320 cases/640 controls for the aim focused on miRNAs; of these, 173 cases/346 controls will be included in the aim focused on p16, COX-2 and Ki67 immunopositivity, and of the latter, 156 case-control pairs will be included in the aim focused on the Oncotype DX Breast DCIS score®. Multivariate conditional logistic regression will be used for statistical analyses. ETHICS AND DISSEMINATION: Ethics approval was obtained from the Institutional Review Boards of Albert Einstein College of Medicine (IRB 2014-3611), Kaiser Permanente Colorado, Kaiser Permanente Hawaii, Henry Ford Health System, Mayo Clinic, Marshfield Clinic Research Institute and Hackensack Meridian Health, and from Lifespan Research Protection Office. The study results will be presented at meetings and published in peer-reviewed journals.


Asunto(s)
Biomarcadores de Tumor , Neoplasias de la Mama , Carcinoma Ductal de Mama , Carcinoma Intraductal no Infiltrante , MicroARNs , Neoplasias de la Mama/epidemiología , Neoplasias de la Mama/genética , Carcinoma Intraductal no Infiltrante/epidemiología , Carcinoma Intraductal no Infiltrante/genética , Estudios de Cohortes , Femenino , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...